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We investigate the Hubbard model on the triangular lattice at half filling using the dynamical cluster
approximation (DCA) and dual fermion (DF) methods in combination with continuous-time quantum Monte
Carlo (CT QMC) and semiclassical approximation (SCA) methods. We study the one-particle properties and
nearest-neighbor spin correlations using the DCA method. We calculate the spectral functions using the CT
QMC and SCA methods. The spectral function in the SCA and obtained by analytic continuation of the Padé
approximation in CT QMC are in good agreement. We determine the metal-insulator transition and the hys-
teresis associated with a first-order transition in the double-occupancy and nearest-neighbor spin-correlation
functions as functions of temperature. As a further check, we employ the DF method and discuss the advan-
tages and limitation of the dynamical mean-field theory, DCA, and recently developed DF methods by com-
paring the Green’s functions. We find an enhancement of antiferromagnetic correlations and provide evidence
for magnetically ordered phases by calculating the spin susceptibility.
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I. INTRODUCTION

The physics of systems which exhibit strong electronic
correlations and geometric frustrations at the same time is
still unclear and therefore interesting. Recent experiments,
such as discovery of the pyrochlore compound LiV,0, (Ref.
1) which shows heavy fermion behavior and organic materi-
als x-(BEDT-TTF),X (Ref. 2) which exhibit various inter-
esting phases, motivated us to study the frustrated systems in
more detail. Theoretically they are described by a two-
dimensional one-band Hubbard or #-J models on the triangu-
lar lattice. It is well known that on the square lattice at half
filling the ground state is a Mott insulator with antiferromag-
netic (AF) order; but on the triangular lattice the frustration
suppresses AF order, and we expect to find a Mott transition.

In this paper, we study the model which was presented in
a recent paper of Imai and Kawakami.’ They used the dy-
namical cluster approximation (DCA) method*~® in combi-
nation with noncrossing approximation and fluctuation ex-
change methods at high-temperature regions in metallic
states to demonstrate how geometrical frustration suppresses
AF correlations by tuning anisotropic hopping ¢’ in Fig. 1(a).
However, the methods used in the paper are limited to high
temperatures. For this reason we investigate the low-
temperature metal-insulator transition (MIT) with a first-
order transition and the evidence of magnetically ordered
phases. In addition, we test the newly developed dual fer-
mion (DF) method’® beyond the single-site dynamical
mean-field theory (DMFT) method by comparing the
Green’s function of single-site DMFT,'®!! DF, and DCA
methods with N.=4 and 16.

The paper is organized as follows. In Sec. II, we introduce
the model and discuss the advantages and limitations of the
computational methods briefly. In Sec. III, we present the
results. In Sec. IIT A, we compare the spectral functions
which exhibit the quasiparticle peak and gap structure ob-
tained by the semiclassical approximation (SCA) (Refs. 12
and 13) and continuous-time quantum Monte Carlo (CT
QMC) (Ref. 14) methods with Padé approximation. In Sec.
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III B, we show that the MIT is a first-order transition by
measuring the total density of state (DOS), double occu-
pancy, and nearest-neighbor spin correlations. In Sec. III C,
we calculate the single-particle Green’s function using the
DMEFT, DF, and DCA methods with N.=4 and 16. Specifi-
cally, we show that the DF method which is based on the
single-site DMFT method can describe nonlocal correlation
effects very well. In Sec. III D, we explore the spin suscep-
tibility using the DF method. In Sec. IV, we give a summary
work.

II. MODEL AND METHODS
A. Model

We consider the two-dimensional Hubbard model on the
triangular lattice. Here,

H=—t2 cit,cj(,+ UE nihy) (1)
(i.j)o i

where ¢;,(c}) is the annihilation (creation) operator of an
electron with spin o at the ith site, 7 is the hopping matrix

(a) (b)

FIG. 1. (a) Schematic representation of triangular lattice with
electron hoppings. (b) Equivalent representation of (a) for a square
structure. (c) Example of the coarse-graining cells in the BZ for the
triangular lattice (a) where the cluster size is N.=4.
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element, and U represents the Coulomb repulsion. In this
paper we only consider the isotropic hopping of 7' =¢ in Figs.
1(a) and 1(b).

Due to the geometrical frustration, this model has broken
particle-hole symmetry even at half filling unlike the case of
the square lattice and the original Brillouin zone (BZ) has a
hexagonal structure shown by the dotted line in Fig. 1(c). For
this model there are lots of studies using varieties of methods
such as the path-integral renormalization-group method, '
the quantum Monte Carlo (QMC) method,!” the DMFT,!8-20
and the cluster-extension method of DMFT.?!-2* Especially,
DF (Refs. 7-9) and DCA methods*~¢ are noteworthy because
both methods can capture nonlocal correlation effect which
are lost in the single-site DMFT and they are computation-
ally cheaper and have less of a sign problem than the lattice
QMC calculation. In short, DCA method can treat correla-
tions up to a cluster size N, accurately and long-range cor-
relations are considered on the mean-field level. On the other
hand, the DF method considers long-range as well as short-
range correlations within perturbative diagram expansion,
which is done by introducing an auxiliary field. Because
each method has its limitations, it is useful to compare re-
sults of both. We use the CT QMC method,'* which can
access the low-temperature region easily without the Trotter
error as well as the SCA method'>!® as impurity solvers.

B. DCA method

The DCA method*~% assumes that the self-energy in the
first BZ is constant and the coarse-grained Green’s function
(DCA equation) is given by Eq. (2). Here,

_ 1 1
G,(K,2)=— ,
K= 5,

(2)

where N is the number of lattice sites in each first BZ and the

summation over K is calculated in each of them. For delimi-
tation we consider an example of N.=4 in order to explain
the DCA method. The first BZ [dashed line in Fig. 1(c)] is
created by partitioning the original BZ. Like the standard
procedure of DMFT, the coarse-grained Green’s function is
determined self-consistently after several iterations. The
main advantages of the DCA method are that it considers
short-range correlations in the cluster size exactly and has
smaller computational load and fermionic sign problem com-
pared to the lattice calculation by QMC method. However, it
is still expensive in terms of computational time and long-
range correlations are just treated on the mean-field level.

C. DF method

The DF method’? is a relatively new method which can
describe nonlocal correlations based on the single-site
DMFT method. The basic idea of the DF method is to con-
vert the hopping of different fermions into an effective cou-
pling to an auxiliary field. Each lattice site can be viewed as
an impurity which is easily described by the DMFT method.
While these impurities are not totally isolated, they are per-
turbatively coupled by the auxiliary field. The starting point
is the action of DMFT which is represented in the form
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S[C+’C] = 2 Slgmp - E (AV_ Ek)cr/k()'cvko’? (3)

v.k,o

where A, is the hybridization function describing the inter-
action of an effective impurity with a bath and v is the fer-
mionic Matsubara frequency. Here we use the dispersion re-
lation €,=-2#[cos(k,)+cos(k,)+cos(k,+k,)] based on the
correspondence of a triangular lattice to a square lattice with
diagonal hopping in Fig. 1(b). This “square lattice” has a
simple BZ which makes the momentum summation to be
easily performed by using the fast Fourier transformation. By
the dual transformation, the lattice problem is changed to an
impurity problem which is coupled by the auxiliary field

(7). Here,

S[etsesfT.f1= 2 St + 20 183 (Claf o+ Hee)

k,v,o

+ g]_)Z(AV - ek)_lf]]:m kwr] . (4)

The lattice Green’s function is derived from the exact rela-
tion between Egs. (3) and (4). Here,

G=8, (A, — €)2G:, + (A, - )7, (5)

where Gik is the dual Green’s function and g, is the local
Green’s function calculated by single-sitt DMFT. The main
point for this method is that in Eq. (4) the integration over ¢’
and ¢ can be performed separately for each site which yields
an effective action of the auxiliary field f and f7. The Taylor
expansion in powers of f7 and f will introduce the two-
particle, three-particle,..., vertex functions. Using the
skeleton-diagram expansion we calculate the dual self-
energy and the dual Green’s function by the Dyson equation.
We obtain the lattice Green’s function via Eq. (5). Even
though the DF method is an approximate method, it consid-
ers not only the short-range but also the long-range correla-
tions. Moreover, the calculation of the two-particle properties
does not introduce serious computational burden and fermi-
onic sign problem.

D. SCA method

At high temperature the Monte Carlo integration over the
auxiliary classical field ¢(7) can be approximated by assum-
ing ¢(7) = const. This approximation is useful because it al-
lows us to check the QMC results at temperature quickly. In
this part we introduce the SCA method'?!3 as impurity solver
for DCA method. We consider a four-site cluster (N.=4) for
triangular lattice such as the structure in Fig. 1(a). In this
case the partition function is defined as a functional integral
over 2 X 4-component spin and site-dependent spinor fields
c" and ¢ as

Z= f D[c:fc,-]e_seff, (6)

where

205117-2



HUBBARD MODEL ON THE TRIANGULAR LATTICE USING...

B B
Seff=f d”rf d7'dr cf(Day(r,7")c(r)
0 0

B N-1
+j drY, Un; (D, (7). (7)

0 i=0

Here a, (7, 7') is the Weiss field which is determined self-
consistently by Eq. (2) and B8=1/T is the inverse tempera-
ture. In this model a,, is given as

Ao A1 A1 Ao
’ A1 Qoo 410 4o
ay(r,7)=

Aig dig Aoo Ao

Aig A1 10 Qoo

We can decouple the interaction term as
Uz 2
Un;y()n; (1) = Z[N,-(T)—M,-(T)], (8)

with nTnl=j—l[(nT+nl)2—(nT—n1)2]=JT(NZ—MZ). We employ
the continuous Hubbard-Stratonovich transformation in order
to decouple M terms related to auxiliary field ¢;(7). Here we
assume that ¢,(7) is 7 independent and N term is neglected
because charge fluctuations are small at half filling. By the
Grassmann integration we can rewrite the partition function
which is represented as a four-dimensional integration in
terms of ¢; and the fermionic Matsubara frequency. Here,

Z= f dpje~Setalio) ¢ (9)
where the effective action S =BV is defined by
W@zéﬁj%?ﬁiﬁ—Tzhnmbﬁwﬂ (10)
where M is defined as "’
M=a+li¢0.. (11)

Here j=1,2,3,4 and o, is the z-component Pauli matrix.
The impurity Green’s function is calculated by

_Léan
JUN. da;

(12)

In real frequency space the spectral function is calculated by
replacing a(iw) with a(w). The SCA method is not only
cheap in computational time but also gives good results in
the strong-coupling regime. On the other hand, it underesti-
mates the spectral function around w=0 and gives qualita-
tively wrong results at low temperature.

E. CT QMC method

Here we describe the CT QMC method.'* The starting
point is action can be split into an unperturbed action S, and
an interaction part W. By Taylor expansion of partition func-
tion in powers of the interaction U, we can re-express the
partition function,
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(- U)F S
2= 2y | drig...dr D)\, (13)
ko k lo° ko
with the correlation function.
Do =(T(e )y, e Clrror, ), (14)

where Z,=Tr(Te™%) is the partition function for unperturbed
system, integration over dr implies the integral over 7 and
sum over all lattice states, and T is the time-ordering opera-
tor. By Wick’s theorem the weight function D:i ”::::’;” is de-
termined by

Dl o = detlg(r, = rlii.j=1, ... .k, (15)
where go(r;—r;) is the bare Green’s function. The Green’s
function is defined by

i,
-. (16)

P P
<Crr](rcr]a e Cr/k(rcrka>

T T T
(Tcr,c,cr,h,c,la oot ChrkoC

G(r,r') =

By the fast-update formula'*?* and the Fourier transforma-

tion we can rewrite the Green’s function in the Matsubara
frequencies space,

G(w) = go(w) — go(w) [ éE Mi’jeiw(T[_Ti)]gO(w)’ (17)
ij

where M=D"! and g,(w) is the bare Green’s function. A
two-particle Green’s function related to a vertex function for
DF method can be calculated by Wick’s theorem. With this
method it is possible to perform calculations in low-
temperature regions which cannot be accessed easily with
determinant QMC method without the Trotter error. For ex-
ample, the matrix size of the CT QMC method is scaled by
(k)~0.5N_.UB which is comparable to determinant QMC
(Ref. 26) method scaled by (k) ~2N_.UB. Moreover, even if
the recently developed strong-coupling CT QMC
method,?>?” which is based on a diagrammatic expansion in
the impurity-bath hybridization, has nice advantages such as
removing the fermionic sign problem and calculating lower-
temperature regions, its computational effort in large cluster
is increased exponentially by the number of sites N,.. How-
ever, our CT QMC method can overcome the problem be-
cause the computational burden only increases linearly with
the number of sites.

III. RESULTS

A. Comparison of the spectral functions for the SCA
and CT QMC methods

First we compare the one-particle spectral functions ob-
tained from the SCA and CT QMC methods with Padé ap-
proximation for analytical continuation. Since the process, in
which G(iw) calculated by the CT QMC method changes
into G(w) with Padé approximation, introduces large error, it
is useful check to compare QMC results to SCA results
which are calculated in real frequency space. Moreover, be-
cause the systems with geometrical frustration have large U,.,
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FIG. 2. One-particle spectral function A(K,w) corresponding to
the K=(r,m/\3) for B=1.6667, (a) U=6, and (b) U=9 by means
of the SCA and CT QMC with Padé approximation.

the SCA method is suitable for this model. The spectral func-
tion is given by

A K, 0)=- L G (K, w). (18)

We compare the Green’s function on the Fermi surface K
=(,m/y3). The results are shown in Figs. 2(a) and 2(b). At
U=6 in Fig. 2(a) the difference of both results is that the
peak of quasiparticle obtained from QMC method lies
around the Fermi level (w=0) due to the geometrical frus-
tration. On the other hand, the peak obtained from SCA
method deviates from the Fermi level because the SCA un-
derestimates the w=0 peak. At U=9 in Fig. 2(b) the agree-
ment of both results is more reasonable and a (pseudo)gap
structure is represented.

B. Metal-insulator transition with a first-order transition

Here we present our results on the MIT due to geometri-
cal frustration effect obtained with the CT QMC method. In
a previous study of unfrustrated square lattice using DCA
method, it was shown that short-range AF correlations de-
stroy the Fermi-liquid quasiparticle peak at finite
temperature.”® According to Ref. 28, Moukouri and Jarrell
increased the system size gradually in the weak-coupling re-
gime on unfrustrated square lattice and measured the total
DOS. Eventually, even if the quasiparticle peak is clearly
visible at N.=1 in DMFT method, there is a small gap at
N.=16 which completely disappears at N.=64. In this sys-

008 T T T T T T T T T T
Ne=4 —— | o0.07 s
0.07 N=16 -ooeeeee B o
0.06 4 006 r
0.05 | (@) | 0.05 f(b)
[92] -
Q 004 4 004
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0.01 4 oo
1 1 1
105 0 5 10
(0]

FIG. 3. Total DOS with N.=4 and 16 for 8=4, (a) U=6, and (b)
U=10 via CT QMC with Padé approximation.
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FIG. 4. Double occupancy as a function of U/t at several tem-
peratures for N.=4. U,=7.2 for T=0.2, U.,=6.9 for T=0.1, and
U,.=6.7 for T=0.05.

tem we did not find a band insulator transition. Also, the
“plaquette singlet” state is dominant at N.=4 in DCA
method.?’ However, on the triangular lattice the frustration is
enough to destroy the AF correlation. In Figs. 3(a) and 3(b),
we can see the MIT by comparing the total DOS for U=6,
U=10, and B=4 using the DCA method with N.=4 and 16.
Unlike the results for unfrustrated square lattice, the quasi-
particle peak around the Fermi level is clearly seen with
increasing N, at U=6 in Fig. 3(a). At U=10 in Fig. 3(b) we
can see the Mott insulator in both N.=4 and 16. This is
evidence of a MIT on the triangular lattice.

In the low-temperature regime we are also interested in
finding whether there is a first-order transition or a continu-
ous transition and how the geometrical frustration affects the
system. We expect our system to have a first-order transition
because of the recent two cellular DMFT results?*3° which
show a first-order transition on the square lattice with N,
=4 and on the triangular lattice with anisotropic hopping at
low temperatures. In order to find evidence of a first-order
transition we measure the double occupancy at several tem-
peratures. Our result is shown in Fig. 4. The system displays
a crossover between metal and insulator at 7=0.2. At T
=0.1 we can see hysteresis associated with a first-order tran-
sition and at lower temperature hysteresis is clearer.

In order to understand the system more clearly we calcu-
late the nearest-neighbor spin-correlation function (S5S5, )
which is shown in Fig. 5. At U, jumps of the spin-correlation
function indicate the MIT arising from competition between
the quasiparticle formation and the frustrated spin correla-
tion. Specifically, the spin correlation is enhanced weakly at
U.=7.2 for T=0.2 while it is increased rapidly at U, in T
<0.1. Here is U,=6.9 for T=0.1 and U,=6.7 for 7=0.05.
This means that the entropy at 7=0.2 and in 7<<0.1 is re-
leased by geometrical frustration and spin correlation, re-
spectively, as temperature decreases and the entropy at insu-
lator state in 7<<0.1 has small value which is triggered a
first-order transition because of a formation of AF state.

Moreover, we find that the anomalous character in the
metallic state is unlike the results of the nearest-neighbor
spin correlation on the kagomé lattice.’! In the metallic state
the spin correlation is weak. This is the reason that geometri-
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FIG. 5. The nearest-neighbor spin-correlation function as a
function of U/t at several temperatures for N.=4. U.=7.2 for T
=0.2, U.=6.9 for T=0.1, and U,.=6.7 for T=0.05.

cal frustration is more dominant than AF spin correlation at
lower temperature in the metallic state because the frustra-
tion on the triangular lattice is stronger than that on the
kagomé lattice. However, in the insulating state AF spin cor-
relation is enhanced stronger than the frustration effect at
lower temperature so the spin correlation is strong with de-
creasing temperature.

C. Comparison of the Green’s functions among the DCA, DF,
and DMFT methods

In this part we used the DMFT, DF, and DCA methods
with N.=4 and 16 to study the nonlocal correlation effects
and compare the on-site and nearest-neighbor Green’s func-
tions in the Matsubara space.

In Figs. 6(a)-6(d), we present the Green’s functions ob-
tained from DMFT, DF, and DCA methods with N.=4 and
16 for B=4, U=6, and U=10. The on-site Green’s function
of DMFT method in Fig. 6(a) is similar to the results of DCA
and DF methods and all of these indicate the metallic states.
A remarkable point is that in Figs. 6(a) and 6(c) both the
on-site and nearest-neighbor Green’s functions obtained
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0123 456 7 8 01 2 3 45 6 7 8
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o - o
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FIG. 6. (Color online) The imaginary part of the on-site Green’s
function for B=4, (a) U=6, and (b) U=10. The real part of the
nearest-neighbor Green’s function for 8=4, (c) U=6, and (d) U
=10.
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FIG. 7. (Color online) (a) The spin susceptibility x(g) in the
insulating state for U/r=10.0 and Br=2.5. (b) The spin susceptibil-
ity as a function of temperature at ¢=(0,0) and (27/3,27/3).

from DF method are closer to those of the DCA method with
N,.=16 than to those with N,=4. In Fig. 6(b) at U=10 the
on-site Green’s function calculated by the DMFT still shows
the metallic state which overestimates the value of U, be-
cause of a lack of nonlocal correlation. However, the DCA
and DF methods can capture the insulating state, and the
agreement of the on-site Green’s function calculated by the
DF and DCA methods with N.=16 is quite reasonable. In
Fig. 6(d), the nearest-neighbor Green’s functions obtained
from DF method are still closer to those of N.=16 than those
of N.=4. This suggests that despite the fact that the DF
method is a perturbative method, it would describe physics
quite well than the DCA method with small cluster size. We
expect that considering high-order diagrams will improve the
results of the DF method.

D. Spin susceptibility using the DF method

In order to explore a magnetic instability we measure the
spin susceptibility using the DF method. The reason why we
employ DF method for the spin susceptibility is that the
cluster-extension method of the DMFT takes a large amount
of time in order to obtain the two-particle properties. On the
other hand, because the DF method includes the vertex
renormalization through the Bethe-Salpeter equation, the
computational burden is not serious and the results are rela-
tively good compared to those of QMC method.’ Figure 7(a)
shows x(g) for U/t=10.0 and Br=2.5 where the system is in
the insulating state. The y(g) has a maximum peak at g
=(2m/3,2m/3). The spin susceptibility x(q) at g
=(2m/3,2m/3) and (0,0) as a function of temperature is ex-
hibited in Fig. 7(b). As temperature decreases, x(gq) at ¢
=(27/3,2m/3) shows strong enhancement of the AF corre-
lations.

IV. CONCLUSIONS

In summary, we have investigated the Hubbard model on
the triangular lattice using the DCA and DF methods. Using
the DCA method we compared the spectral functions ob-
tained from SCA and CT QMC methods. We found a good
agreement of both methods, and the quasiparticle peak and
gap structure are presented in the weak-coupling and strong-
coupling regions, respectively. We found a MIT with a first-
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order transition at low temperatures because of the effect of
geometrical frustration. Moreover, we employed the DF
method which considers the long-range as well as short-
range correlations and compared the Green’s functions of the
DF method to those of the DMFT and DCA methods with
N.=4 and 16. We found that the DF method does not only
overcome the overestimation of U, in DMFT method but we
also found that its results are closer to the case of N.=16
than to that of N.=4. Finally, we calculated the spin suscep-
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tibility x(g) via DF method. We found that the x(g) at ¢
=(2m/3,2m/3) grows rapidly as temperature decreases.
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